Rifampin and Rifaximin Resistance in Clinical Isolates of Clostridium difficile
- 1 August 2008
- journal article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 52 (8), 2813-2817
- https://doi.org/10.1128/aac.00342-08
Abstract
Rifaximin, a poorly absorbed rifamycin derivative, is a promising alternative for the treatment of Clostridium difficile infections. Resistance to this agent has been reported, but no commercial test for rifaximin resistance exists and the molecular basis of this resistance has not been previously studied in C. difficile. To evaluate whether the rifampin Etest would be a suitable substitute for rifaximin susceptibility testing in the clinical setting, we analyzed the in vitro rifaximin susceptibilities of 80 clinical isolates from our collection by agar dilution and compared these results to rifampin susceptibility results obtained by agar dilution and Etest. We found rifaximin susceptibility data to agree with rifampin susceptibility; the MICs of both antimicrobials for all isolates were either very low or very high. Fourteen rifaximin-resistant (MIC, > or = 32 microg/ml) unique isolates from patients at diverse locations in three countries were identified. Molecular typing analysis showed that nine (64%) of these isolates belonged to the epidemic BI/NAP1/027 group that is responsible for multiple outbreaks and increased disease severity in the United Kingdom, Europe, and North America. The molecular basis of rifaximin and rifampin resistance in these isolates was investigated by sequence analysis of rpoB, which encodes the beta subunit of RNA polymerase, the target of rifamycins. Resistance-associated rpoB sequence differences that resulted in specific amino acid substitutions in an otherwise conserved region of RpoB were found in all resistant isolates. Seven different RpoB amino acid substitutions were identified in the resistant isolates, which were divided into five distinct groups by restriction endonuclease analysis typing. These results suggest that the amino acid substitutions associated with rifamycin resistance were independently derived rather than disseminated from specific rifamycin-resistant clones. We propose that rifaximin resistance in C. difficile results from mutations in RpoB and that rifampin resistance predicts rifaximin resistance for this organism.Keywords
This publication has 26 references indexed in Scilit:
- Comparison of Seven Techniques for Typing International Epidemic Strains of Clostridium difficile : Restriction Endonuclease Analysis, Pulsed-Field Gel Electrophoresis, PCR-Ribotyping, Multilocus Sequence Typing, Multilocus Variable-Number Tandem-Repeat Analysis, Amplified Fragment Length Polymorphism, and Surface Layer Protein A Gene Sequence TypingJournal of Clinical Microbiology, 2008
- In Vitro Activities of 15 Antimicrobial Agents against 110 Toxigenic Clostridium difficile Clinical Isolates Collected from 1983 to 2004Antimicrobial Agents and Chemotherapy, 2007
- Interruption of Recurrent Clostridium difficile-Associated Diarrhea Episodes by Serial Therapy with Vancomycin and RifaximinClinical Infectious Diseases, 2007
- Construction and analysis of chromosomal Clostridium difficile mutantsMolecular Microbiology, 2006
- In Vitro Activity of Novel Rifamycins against Rifamycin-Resistant Staphylococcus aureusAntimicrobial Agents and Chemotherapy, 2006
- Analysis of rpoB and pncA mutations in the published literature: an insight into the role of oxidative stress in Mycobacterium tuberculosis evolution?Journal of Antimicrobial Chemotherapy, 2005
- In vitro Activity of Rifaximin, Metronidazole and Vancomycin against Clostridium difficile and the Rate of Selection of Spontaneously Resistant Mutants against Representative Anaerobic and Aerobic Bacteria, Including Ammonia-Producing SpeciesChemotherapy, 2000
- Antimicrobial activity and spectrum of rifaximin, a new topical rifamycin derivativeDiagnostic Microbiology and Infectious Disease, 1993
- Basic local alignment search toolJournal of Molecular Biology, 1990
- Mapping and sequencing of mutations in the Escherichia colirpoB gene that lead to rifampicin resistanceJournal of Molecular Biology, 1988