Temporal Gradient in Shear But Not Steady Shear Stress Induces PDGF-A and MCP-1 Expression in Endothelial Cells
- 1 April 1999
- journal article
- research article
- Published by Wolters Kluwer Health in Arteriosclerosis, Thrombosis, and Vascular Biology
- Vol. 19 (4), 996-1003
- https://doi.org/10.1161/01.atv.19.4.996
Abstract
—Three well-defined laminar flow profiles were created to distinguish the influence of a gradient in shear and steady shear on platelet-derived growth factor A (PDGF-A) and monocyte chemoattractant protein-1 (MCP-1) expression in human endothelial cells. The flow profiles (16 dyne/cm2 maximum shear stress) were ramp flow (shear stress smoothly transited at flow onset), step flow (shear stress abruptly applied at flow onset), and impulse flow (shear stress abruptly applied for 3 s only). Ramp flow induced only minor expression of PDGF-A and did not increase MCP-1 expression. Step flow increased PDGF-A and MCP-1 mRNA levels 3- and 2-fold at 1.5 hours, respectively, relative to ramp flow. In contrast, impulse flow increased PDGF-A and MCP-1 expression 6- and 7-fold at 1.5 hours, and these high levels were sustained for at least 4 hours. These results indicate that a temporal gradient in shear (impulse flow and the onset of step flow) and steady shear (ramp flow and the steady component of step flow) stimulates and diminishes the expression of PDGF-A and MCP-1, respectively. NO synthase inhibitor NG-amino-l-arginine (L-NAA) was found to markedly enhance MCP-1 and PDGF-A expression induced by step flow, but decrease their expression induced by impulse flow, in a dose-dependent manner. NO donor spermine-NONOate (SPR/NO) dose-dependently reduced the MCP-1 and PDGF-A expression induced by impulse flow. Moreover, impulse flow was found to stimulate sustained (4 hours) IκB-α degradation and egr-1 mRNA induction. L-NAA prevented IκB-α degradation, whereas SPR/NO increased IκB-α resynthesis 2 hours after impulse flow. Both L-NAA and SPR/NO inhibited the impulse flow inducibility of egr-1 4 hours after the flow stimulation. The results show that both NO induced by steady shear and NO donor inhibit temporal gradient in shear-induced MCP-1 and PDGF-A expression by downregulation of their respective transcription factors NFκB and egr-1, whereas NO induced by impulse flow stimulates MCP-1 and PDGF-A expression by upregulation of the transcription factors. The above findings suggest distinct roles of temporal gradient in shear and steady shear in atherogenesis in vivo.Keywords
This publication has 44 references indexed in Scilit:
- Steady Shear and Step Changes in Shear Stimulate Endothelium via Independent Mechanisms—Superposition of Transient and Sustained Nitric Oxide ProductionBiochemical and Biophysical Research Communications, 1996
- Regulation of Gene Expression by cGMP-dependent Protein KinasePublished by Elsevier ,1996
- Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines.Journal of Clinical Investigation, 1995
- Reactive Oxygen Intermediates (ROIs) Are Involved in the Intracellular Transduction of Angiotensin II Signal in C2C12 CellsAnnals of the New York Academy of Sciences, 1995
- Stimulation of Transcription Factors NFκB and AP1 in Endothelial Cells Subjected to Shear StressBiochemical and Biophysical Research Communications, 1994
- Hemodynamics and the Vascular EndotheliumJournal of Biomechanical Engineering, 1993
- cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell linesNature, 1986
- Flow Effects on Prostacyclin Production by Cultured Human Endothelial CellsScience, 1985
- Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.Journal of Clinical Investigation, 1984
- Localization of atherosclerotic lesions in the human basilar arteryAtherosclerosis, 1980