Quantum Effects in Small-Angle Molecular-Beam Scattering

Abstract
Quantum‐mechanical calculations of the differential cross section for the small‐angle elastic scattering of heavy particles are carried out to establish more definitely the region of validity of the classical approximation. Four results are discussed: (1) The Massey—Mohr phase‐shift formula corresponds to the Kennard small‐angle scattering formula in the semiclassical limit. (2) The Schiff approximation for the cross section is exactly the same as the semiclassical approximation at small angles, for any central potential. (3) At very small angles the semiclassical limit for the differential cross section varies as exp (—cθ2), where c is a function of velocity for which explicit expressions are given. (4) The first quantum deviation from the classical limit, which is proportional to 2, can be combined with the preceding result to give a reasonable representation of the differential cross section over the entire range of small angles for which quantum deviations are appreciable. Detailed calculations for some specific systems are made, and it is shown that Wu's misgivings over the classical interpretation of the experimental results of Amdur and co‐workers are unjustified.