Abstract
The F1F0 proton translocating ATPase of Escherichia coli is a large membrane-bound enzyme complex consisting of more than 20 polypeptides that are encoded by the unc operon. Besides being a system for analysing the enzymology of ATP synthesis and energy coupling, the ATPase is a model system for determining how large oligomeric membrane-bound proteins are synthesized and assembled. The assembly of the ATPase involves differential gene expression and assembly of the subunits within the membrane and with each other. This review discusses the influence of F1 subunits on the assembly and proton permeability of the F0 proton channel, and the possible advantages to assembly of the particular arrangement of genes in the unc operon.