Quantum Geometry and Black Hole Entropy
Preprint
- 1 October 1997
Abstract
A `black hole sector' of non-perturbative canonical quantum gravity is introduced. The quantum black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the horizon. It is shown that the entropy of a large non-rotating black hole is proportional to its horizon area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of the area operator in loop quantum gravity; an appropriate choice of this parameter gives the Bekenstein-Hawking formula S = A/4*l_p^2. With the same choice of the Immirzi parameter, this result also holds for black holes carrying electric or dilatonic charge, which are not necessarily near extremal.All Related Versions
- Version 1, 1997-10-01, ArXiv
- Published version: Physical Review Letters, 80 (5), 904.