Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques.
- 1 May 1991
- journal article
- abstracts
- Published by Wolters Kluwer Health in Circulation
- Vol. 83 (5), 1764-1770
- https://doi.org/10.1161/01.cir.83.5.1764
Abstract
BACKGROUND Although thrombosis associated with a fissured atherosclerotic plaque is believed to be the most common cause of acute coronary syndromes, the underlying factors that trigger plaque rupture are currently unknown. However, the mechanical behavior of the plaque is probably of critical importance. METHODS AND RESULTS To test the hypothesis that the mechanical properties of a plaque are dependent on its composition and, in particular, that the stiffness of fibrous caps changes within the range of frequencies carried by a physiological pressure wave, the stress-strain relation was studied in 27 fibrous caps and related to the underlying histological structure of the fibrous cap. Fibrous caps were obtained during 14 autopsies from the abdominal aorta and were classified by histological examination as cellular (n = 7), hypocellular (n = 9), or calcified (n = 11). Hypocellular fibrous caps were 1-2 times stiffer than cellular caps (p less than 0.005), and calcified caps were 4-5 times stiffer than cellular caps (p less than 0.005). All 27 fibrous caps demonstrated an increase in stiffness with increasing frequencies of stress ranging from 0.05 to 10 Hz; the increase in stiffness was similar in all three histological classes. CONCLUSIONS We conclude that the stiffness of fibrous caps from human atherosclerotic plaques is related to the underlying histological structure and that the stiffness increases with frequency in the range of physiological heart rates. The protective benefit of beta-adrenergic receptor blocking agents in coronary artery disease may, in part, be related to the frequency dependence of atherosclerotic plaque stiffness.Keywords
This publication has 24 references indexed in Scilit:
- Influence of heart rate on mortality after acute myocardial infarctionThe American Journal of Cardiology, 1990
- Propranolol and the morning increase in the frequency of sudden cardiac death (BHAT study)The American Journal of Cardiology, 1989
- Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden cardiac death and strokeThe American Journal of Cardiology, 1988
- Concurrent Morning Increase in Platelet Aggregability and the Risk of Myocardial Infarction and Sudden Cardiac DeathNew England Journal of Medicine, 1987
- Coronary Angioscopy in Patients with Unstable Angina PectorisNew England Journal of Medicine, 1986
- Circadian Variation in the Frequency of Onset of Acute Myocardial InfarctionNew England Journal of Medicine, 1985
- Circadian changes in anticoagulant effect of heparin infused at a constant rate.BMJ, 1985
- Thrombosis and Acute Coronary-Artery Lesions in Sudden Cardiac Ischemic DeathNew England Journal of Medicine, 1984
- Segmental analysis of the rate of progression in patients with progressive coronary atherosclerosisAmerican Heart Journal, 1983
- Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical PropertiesJournal of Biomechanical Engineering, 1981