Alkaline and acid transients in cerebellar microenvironment
- 1 March 1983
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 49 (3), 831-850
- https://doi.org/10.1152/jn.1983.49.3.831
Abstract
1. Extracellular pH (pHo) was measured in the cerebellar cortex of the rat using a recently developed liquid membrane ion-selective micropipette (ISM). pHo was determined during stimulus-evoked neuronal activity, elevated extracellular potassium concentration, [K+]o, spreading depression (SD), and complete ischemia. In many experiments [K+]o was simultaneously determined. 2. A train of local surface stimuli (LOC) produced an initial alkaline shift in pHo from a base line of 7.20-7.30 to 7.25-7.35. This was followed by a long-lasting acid phase that reached a plateau of 7.05-7.15 after 64 s of stimulation. pHo decrease was related to stimulus frequency, intensity, and duration. 3. Superfusion with Ringer solution containing manganese ions rapidly abolished parallel fiber-induced Purkinje cell synaptic depolarization together with the alkaline shifts while enhancing the acid shifts. 4. Superfusion of the cerebellar cortex with Ringer solution containing increasingly elevated [K+] progressively lowered pHo to a plateau of 6.95-7.05. The acidification occurred in the presence of ouabain but was reversed on return to the normal [K+]o or with the addition of the glycolytic blocker, fluoride. Stimulus-evoked alkaline shifts were enhanced by K+-Ringer superfusion. These experiments suggested that the acid shift was due to the metabolic production of an anion, possibly lactate. 5. Elevation of [K+]o above 8-12 mM often produced oscillation in pHo and [K+]o with a period of about 40 s. Sometimes these oscillations ended in a spontaneous SD or SD could be evoked by stimulation. Under these conditions of raised [K+]o, the SD consisted of a very pronounced alkaline transient followed by a small, long-lasting acid shift. When SD was induced by conditioning the cerebellum with proprionate or lowered NaCl, the alkaline phase was reduced and the acid enhanced. 6. Complete ischemia began with a progressive decrease of pHo and rise in [K+]o. When [K+]o reached 12 mM, a second more rapid rise in [K+]o to 40 mM or more occurred. This was correlated with 0.1-0.2 pHo transient increase similar to that seen during SD. pHo eventually reached a plateau of 6.60-6.80, close to neutrality. 7. Superfusion with Ringer solution containing acetazolamide immediately altered pHo homeostasis by increasing base-line pHo by about 0.10 and enhanced the induced pHo changes. These results suggest that carbonic anhydrase (CA) is important for acute buffering of the brain extracellular microenvironment. 8. The above results were interpreted in terms of changes in extracellular strong ion concentration differences ( [SID]o), extracellular concentration of total weak acid ( [Atot]o) and partial pressure of CO2 (Pco2) in the brain microenvironment. The results indicate that neuronal activity produces changes in many of the constituents of the microenvironment.This publication has 4 references indexed in Scilit:
- Tetrodotoxin resistant propagation and extracellular sodium changes during spreading depression in rat cerebellumBrain Research, 1982
- ATPase and carbonic anhydrase activities of bulk-isolated neuron, glia and synaptosome fractions from rat brainBrain Research, 1978
- Extracellular potassium and trasmitter release at the giant synapse of squid.The Journal of Physiology, 1977
- Selective antagonism of frog cerebellar synaptic transmission by manganese and cobalt ionsBrain Research, 1976