Propagation and Quantization of Rarita-Schwinger Waves in an External Electromagnetic Potential

Abstract
The Rarita-Schwinger equation in an external electromagnetic potential is shown to be equivalent to a hyperbolic system of partial differential equations supplemented by initial conditions. The wave fronts of the classical solutions are calculated and are found to propagate faster than light. Nevertheless, for sufficiently weak external potentials, a consistent quantum mechanics and quantum field theory may be established. These, however, violate the postulates of special relativity.