Increased Intestinal Permeability in Endotoxic Pigs

Abstract
• Infusing pigs with lipopolysaccharide (LPS) decreases superior mesenteric artery blood flow (Qsma), suggesting that mesenteric hypoperfusion may be responsible for LPS-induced alterations in gut mucosal permeability. To test this hypothesis, we studied four groups of anesthetized swine. Group 1 animals (N = 6) were infused with LPS (250 μg/kg over 1 hour beginning at 60 minutes) and continuously resuscitated with Ringer's lactate (48 mL/kg per hour). In group 2 (N = 5), Qsma was decreased by 50% by means of a mechanical occluder to mimic the LPS-induced alterations in Qsma observed in group I. Group 3 (N = 5) was included to document our ability to detect ischemia/reperfusion–induced alterations in mucosal permeability; in these pigs, Qsma was decreased in steps to zero flow (at 150 to 210 minutes) and then perfusion was restored (at 210 to 270 minutes). Pigs in group 4 (N =6) served as normal controls; these animals were resuscitated with Ringer's lactate at the same rate as in group 1 but were not infused with LPS. To assess mucosal permeability, we measured plasma-to-lumen clearances for two markers, chromium 51–labeled edetic acid monohydrate (EDTA) and urea. Loading and maintenance infusions of the markers were given intravenously, and a 20-cm isolated segment of small intestine was continuously perfused at 2 mL/min with Ringer's lactate at 37°C. Results were expressed as the ratio of the clearances for the two probes (CEDTA/CUREA). In group 3, CEDTA/CUREA was 999% ±355% of baseline at 270 minutes. In group 1, CEDTA/CUREA was 572%±235% of baseline at 270 minutes. In groups 2 and 4, however, CEDTA/CUREA did not change significantly from the baseline value over the duration of the study. These data suggest that increased mucosal permeability after LPS is due to factors other than (or in addition to) mesenteric hypoperfusion. (Arch Surg. 1991;126:211-218)