Abstract
We investigated the chemical identity of the endothelium-derived relaxing factor generated by acetylcholine in cerebral microvessels by studying the effects and mechanism of action of inhibitors of nitric oxide synthesis from arginine on the vasodilation and endothelium-derived relaxing factor production induced by topical application of acetylcholine in cerebral arterioles. We determined cerebral arteriolar dilation and endothelium-derived relaxing factor production by bioassay in anesthetized cats equipped with cranial windows during superfusion of 10(-7) M acetylcholine before and after administration of either NG-monomethyl L-arginine or NG-nitro-L-arginine, two inhibitors of nitric oxide synthesis. NG-Nitro-L-arginine abolished the vasodilation from acetylcholine and eliminated the production of endothelium-derived relaxing factor in the bioassay experiments. NG-Monomethyl L-arginine had no effect on the response to acetylcholine in the absence of pretreatment. However, after pretreatment with the detergent sodium dodecyl sulfate to increase cell membrane permeability, the inhibitor had effects identical to those of NG-nitro-L-arginine. L-Arginine reversed the effects of the inhibitors of nitric oxide synthesis. Neither inhibitor affected baseline vascular caliber, nor did they generate a vasoconstrictor agent in the bioassay experiments. The two inhibitors of nitric oxide synthesis did not affect the response to nitroprusside or adenosine, showing that the effect on responses to acetylcholine was specific. Also, the blockade of the response to acetylcholine induced by the inhibitors of nitric oxide synthesis was unaffected by treatment with superoxide dismutase and catalase, showing that the effect was not mediated by oxygen radicals. The endothelium-derived relaxing factor generated by acetylcholine in cerebral arterioles of cats is either nitric oxide or a nitric oxide-containing substance. The effect of these inhibitors on the response to acetylcholine is mediated by inhibition of the synthesis of nitric oxide. There is no involvement of radicals, and no vasoconstrictor agent is generated.