Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition

Abstract
We present a method to incorporate the relaxation dominated attenuation into the finite-difference time-domain (FDTD) simulation of acoustic wave propagation in complex media. A dispersive perfectly matched layer (DPML) boundary condition, which is suitable for boundary matching to such a dispersive media whole space, is also proposed to truncate the FDTD simulation domain. The numerical simulation of a Ricker wavelet propagating in a dispersive medium, described by second-order Debye model, shows that the Ricker wavelet is attenuated in amplitude and expanded in time in its course of propagation, as required by Kramers-Kronig relations. The numerical results also are compared to exact solution showing that the dispersive FDTD method is accurate and that the DPML boundary condition effectively dampens reflective waves. The method presented here is applicable to the simulation of ultrasonic instrumentation for medical imaging and other nondestructive testing problems with frequency dependent, attenuating media.

This publication has 12 references indexed in Scilit: