Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi

Abstract
We have characterized structural features and the distribution pattern of nuclear group I introns found in ribosomal DNA (rDNA) of closely related plant pathogenic fungi of the family Sclerotiniaceae. Sixteen introns, at two distinct positions in the small-subunit (SSU) and large-subunit (LSU) rDNA, were sequenced and analyzed among the 29 taxa included in the initial screening. Genera found to contain introns were Botrytis, Dumontinia, Encoelia, Grovesinia, Myriosclerotinia, and Sclerotinia. Secondary-structure analyses of the group I introns concluded that all belong to the common IC1 subclass. Interestingly, the SSU rDNA intron from Myriosclerotinia caricisampullacea contains an insertion-like sequence extension which may be a relic of an open reading frame. Incongruent branching patterns of intron-based and rDNA-based (internal transcribed spacer) phylogenetic trees suggest that the fungal host genomes and the group I introns do not share a common evolutionary history. A model to explain how horizontal intron transfers may have occurred among the closely related fungal taxa is proposed.