Direct measurement of aerodynamic pressure above a simple progressive gravity wave

Abstract
Measurements of the aerodynamic pressure distribution at the interface between air and simple progressive water waves are obtained with the use of a pressure sensor that follows the water surface. The theory of Miles (1957, 1959) and Benjamin (1959) on shear flows past a wavy boundary predicts a phase shift between the pressure distribution along the boundary and the boundary itself. An experimental verification of this theory is sought especially. A wind–wave facility 115 ft. long, 6 ft. high and 3 ft. wide was used. The facility is equipped with an oscil-lating-plate wave-generator which is capable of generating sinusoidal or arbitrary wave-forms, and a suction fan which can produce wind velocities up to 80 ft./sec when the water is at a nominal depth of 3 ft. The pressure sensor used for the measurements of pressure, was mounted on an oscillating device such that the sensor could be maintained at a fixed small distance (within 1/4 in.) above a propagating wavy surface at all times. The perturbation pressure over progressive waves is extracted from recorded data sensed by the moving sensor. The results compare favourably with the theoretical predictions of Miles (1959).
Keywords

This publication has 2 references indexed in Scilit: