Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination

Abstract
Soft contact lamination of source/drain electrodes supported by gold-coated high-resolution rubber stamps against organic semiconductor films can yield high-performance organic transistors. This article presents a detailed study of the electrical properties of these devices, with an emphasis on the nature of the laminated contacts with the p- and n-type semiconductors pentacene and copper hexadecafluorophthalocyanine, respectively. The analysis uses models developed for characterizing amorphous silicon transistors. The results demonstrate that the parasitic resistances related to the laminated contacts and their coupling to the transistor channel are considerably lower than those associated with conventional contacts formed by evaporation of gold electrodes directly on top of the organic semiconductors. These and other attractive features of transistors built by soft contact lamination suggest that they may be important for basic and applied studies in plastic electronics and nanoelectronic systems based on unconventional materials.