Abstract
A method is presented that can find the global minimum of very complex condensed matter systems. It is based on the simple principle of exploring the configurational space as fast as possible and of avoiding revisiting known parts of this space. Even though it is not a genetic algorithm, it is not based on thermodynamics. The efficiency of the method depends strongly on the type of moves that are used to hop into new local minima. Moves that find low-barrier escape-paths out of the present minimum generally lead into low energy minima.