Abstract
This analysis deals with vibration characteristics of cantilever beams in which the longitudinal axis, passing through the mass centers of the elementary sections, is not collinear with the longitudinal axis about which the beam tends to twist under the influence of an applied torsional couple. Expressions are derived from which the natural frequencies and normal modes of vibration of such a beam can be determined. The Rayleigh-Ritz method is employed to determine the frequencies and amplitude ratios. Following the development of the general expressions, more specific equations are derived which express the natural frequencies and relative amplitudes of motion in each of two normal modes of vibration. The theoretical relationships of the several physical properties of the beam to the natural frequencies of vibration are shown graphically. Finally a numerical example is presented for a particular beam, and the computed natural frequencies and normal modes are compared with those determined experimentally.