Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps

Abstract
Basic fibroblast growth factor (b-FGF) has been shown to enhance the in vitro survival and neurite extension of various types of neurons including dorsal root ganglia (DRG) cells. Alpha-1 glycoprotein (α1-GP), an acute phase reactant, has been reported to enhance the in vitro neuritic extensions of chick DRG cells. In the present study, we investigated the ability of synthetic nerve guidance channels, which release sustained controlled amounts of b-FGF and/or α1-GP, to support the regeneration of a transected peripheral nerve over a 15 mm long gap, a distance that does not permit regeneration in conventional polymeric tubes. Tubes releasing bovine serum albumin (BSA), cytochrome C, BSA and b-FGF, BSA and denatured b-FGF, BSA and α1-GP, or BSA, b-FGF, and α-1GP were fabricated by a dip-molding technique. In vitro kinetic studies of protein release from these channels showed an initial burst during the 1st day, followed by a linear release for at least 2 weeks thereafter. In vitro studies indicated that the b-FGF released from the polymer was biologically active as assessed by the ability of channels releasing b-FGF to induce neurite extensions in PC12 cells. For in vivo studies, the various types of tubes were used as nerve guidance channels for the repair of a 15 mm nerve gap in the sciatic nerve of rats. Four weeks postimplantation, only the tubes releasing b-FGF or b-FGF and α1-GP displayed regenerated cables bridging both nerve stumps, which contained nerve fascleles with myelinated and unmyelinated axons. We conclude that b-FGF enhances peripheral nerve regeneration and that polymeric tubes releasing macromolecules provide a tool for the study of nerve regeneration.