Heterogeneity in the Membrane Current Pattern of Identified Glial Cells in the Hippocampal Slice
- 1 June 1992
- journal article
- Published by Wiley in European Journal of Neuroscience
- Vol. 4 (6), 472-484
- https://doi.org/10.1111/j.1460-9568.1992.tb00897.x
Abstract
Glial cells, acutely isolated or in tissue culture, have previously been shown to express a variety of voltage-gated channels. To resolve the question whether such channels are also expressed by glial cells in their normal cellular environment, we have applied the patch-clamp technique to study glial cells in hippocampal slices of 10 - 12-day-old mice. Based on the membrane current pattern, we distinguished four glial cell types. One was characterized by passive, symmetrical K+ currents activated in depolarizing and hyperpolarizing directions. A second population showed a similar current pattern, but with a marked decay of the current during the 50-ms voltage jumps. In a third population, the decaying passive currents were superimposed with a delayed rectifier outward current and, in some cases, with a slow inward current activated by depolarization. The fourth population expressed delayed rectifying outward currents, an inward rectifier K+ current and fast inward currents activated by depolarization. To unequivocally identify the glial cells we combined electrophysiological and ultrastructural characterizations. Therefore, cells were filled with the fluorescent dye lucifer yellow during characterization of their membrane currents, the fluorescence of the dye was used to convert diaminobenzidine to an electron-dense material, and subsequently slices were inspected in the electron microscope. Recordings were obtained from cells in the stratum radiatum and were identified as glial by their size, the characteristic chromatin distribution, and the lack of synaptic membrane specializations.Keywords
This publication has 34 references indexed in Scilit:
- Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophagesJournal of Neuroscience Research, 1990
- Ion Channels in Vertebrate GliaAnnual Review of Neuroscience, 1990
- Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acidsNature, 1989
- Glial and neuronal forms of the voltage-dependent sodium channel: characteristics and cell-type distributionNeuron, 1989
- Channel expression correlates with differentiation stage during the development of Oligodendrocytes from their precursor cells in cultureNeuron, 1989
- Photoconversion of some fluorescent markers to a diaminobenzidine product.Journal of Histochemistry & Cytochemistry, 1988
- Heterogeneity of potassium currents in cultured oligodendrocytesGlia, 1988
- Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytesGlia, 1988
- Cultured astrocytes from a syncytium after maturationExperimental Cell Research, 1985
- Neuronal Mapping: A Photooxidation Reaction Makes Lucifer Yellow Useful for Electron MicroscopyScience, 1982