Abstract
Spatial patterns of low-frequency sea level pressure (SLP) variability are identified by performing rotated principal component analysis (RPCA) on a long-term (1899–1986) Northern Hemisphere gridded dataset. The analysis is limited to the region 160°E eastward to 40°E due to missing data early in the century. The objective is to identify a comprehensive set of highly recurrent SLP teleconnection patterns; to examine some aspects of their seasonality; and to identify the associated mean winter pressure fields and cyclone frequencies occurring at times of opposite eigenvector polarity. The results are further described in the context of the Southern Oscillation and known midtropospheric teleconnection patterns. Four low-frequency variability patterns are identified over the Atlantic-European sector, including (i) the North Atlantic 0scillation (NAO), and spatial patterns with SLP variability centers over (ii) the eastern Atlantic (EATL), (iii) southern Europe and the northern Mediterranean basin (S... Abstract Spatial patterns of low-frequency sea level pressure (SLP) variability are identified by performing rotated principal component analysis (RPCA) on a long-term (1899–1986) Northern Hemisphere gridded dataset. The analysis is limited to the region 160°E eastward to 40°E due to missing data early in the century. The objective is to identify a comprehensive set of highly recurrent SLP teleconnection patterns; to examine some aspects of their seasonality; and to identify the associated mean winter pressure fields and cyclone frequencies occurring at times of opposite eigenvector polarity. The results are further described in the context of the Southern Oscillation and known midtropospheric teleconnection patterns. Four low-frequency variability patterns are identified over the Atlantic-European sector, including (i) the North Atlantic 0scillation (NAO), and spatial patterns with SLP variability centers over (ii) the eastern Atlantic (EATL), (iii) southern Europe and the northern Mediterranean basin (S...