In situ imaging of field emission from individual carbon nanotubes and their structural damage

Abstract
Field emission of individual carbon nanotubes was observed by in situ transmission electron microscopy. A fluctuation in emission current was due to a variation in distance between the nanotube tip and the counter electrode owing to a “head-shaking” effect of the nanotube during field emission. Strong field-induced structural damage of a nanotube occurs in two ways: a piece-by-piece and segment-by-segment pilling process of the graphitic layers, and a concentrical layer-by-layer stripping process. The former is believed owing to a strong electrostatic force, and the latter is likely due to heating produced by emission current that flowed through the most outer graphitic layers.