Abstract
Experiments are described in which a "voltage· clamping" technique has been applied to large ecorticate internodal cells of the freshwater alga Nitella. In this technique, a feedback circuit is used to change the potential difference between the vacuole of the cell and the external medium to some predetermined level and maintain it as close as possible to this level during the electrical activity of the cell. It is shown that the main factor in the phenomena of potential change and current flow, during the initial stages of the action potential in Nitella, is a tran-sient increase in the permeability of the cell membrane to calcium ions, and a consequent flow of these ions into the cell from the external medium.

This publication has 4 references indexed in Scilit: