Finite-amplitude instability of parallel shear flows

Abstract
A formal expansion method for analysis of the non-linear development of an oblique wave in a parallel flow is presented. The present approach constitutes an extension and modification of the method of Stuart and Watson. Results are obtained for plane Poiseuille flow, and for a combination of plane Poiseuille and plane Couette flow. The Poiseuille flow exhibits finite-amplitude subcritical instability, and relatively weak but finite disturbances markedly reduce the critical Reynolds number. The combined flow, which becomes stable to infinitesimal disturbances at all Reynolds numbers when the Couette component is sufficiently great, remains unstable to finite disturbances.