Marker-assisted selection of candidate bulls for progeny testing programmes

Abstract
A theoretical analysis of the potential benefits of marker-assisted selection (MAS) of candidate bulls prior to entry into a young sire progeny testing programme was carried out. It is assumed that quantitative trait loci (QTL) affecting milk production have been mapped with respect to known genetic markers, and MAS is based on evaluation of elite sires in order to identify marker alleles in coupling to favourable or unfavourable QTL alleles. Candidate bulls, descendants of the elite sire will then be selected, prior to conventional progeny testing, on the basis of the marker alleles derived from the elite-sire ancestor.The analysis considers recombination between marker and QTL, the difficulty of tracing specific marker alleles from sire to progeny, and the expectation that MAS, in practice, will be implemented in the grandsons, rather than in the sons of elite sires. It is shown that MAS of candidate bulls, based on the use of a single diallelic marker in linkage to a QTL will have only a negligible effect on the rate of genetic progress. Increases of 15 to 20% in the rate of genetic gain, however, can be obtained by the use of single polyallelic markers, and increases of 20 to 30% can be obtained by utilizing haplotypes of diallelic or polyallelic markers.