THE UTILIZATION DURING MITOTIC CELL DIVISION OF LOCI CONTROLLING MEIOTIC RECOMBINATION AND DISJUNCTION IN DROSOPHILA MELANOGASTER
Open Access
- 15 November 1978
- journal article
- research article
- Published by Oxford University Press (OUP) in Genetics
- Vol. 90 (3), 531-578
- https://doi.org/10.1093/genetics/90.3.531
Abstract
To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts are in a nondividing (G2) state.—Mitotic recombination is at or above control levels in the presence of each of the recombination-defective meiotic mutants examined, suggesting that meiotic and mitotic recombination are under separate genetic control in Drosophila.—Of the six mutants examined that are defective in processes required for regular meiotic chromosome segregation, four (l(1)TW-6cs, cand, mei-S332, ord) affect mitotic chromosome behavior. At semi-restrictive temperatures, the cold sensitive lethal l(1)TW-6cs causes very frequent somatic spots, a substantial proportion of which are attributable to nondisjunction or loss. Thus, this locus specifies a function essential for chromosome segregation at mitosis as well as at the first meiotic division in females. The patterns of mitotic effects caused by cand, mei-S332, and ord suggest that they may be leaky alleles at essential loci that specify functions common to meiosis and mitosis. Mutants at the two remaining loci (nod, pal) do not affect mitotic chromosome stability.This publication has 32 references indexed in Scilit:
- The genetic analysis of meiosis in female Drosophila melanogasterPhilosophical Transactions of the Royal Society of London. B, Biological Sciences, 1977
- Spontaneous mutation by mutagenic repair of spontaneous lesions in DNANature, 1976
- Non-reciprocal intragenic mitotic recombination inDrosophila melanogasterGenetics Research, 1974
- RECOMBINATION DEFICIENT MUTANTS OF E. COLI AND OTHER BACTERIAAnnual Review of Genetics, 1973
- Interactions among genes controlling sensitivity to radiation and alkylation in yeastMolecular Genetics and Genomics, 1973
- The development of the imaginal abdomen of Drosophila melanogasterDevelopmental Biology, 1973
- Parameters of the wing imaginal disc development ofDrosophila melanogasterDevelopmental Biology, 1971
- Cell lineage relationships in the imaginal wing disc of Drosophila melanogasterDevelopmental Biology, 1970
- Spontane Chromosomenaberrationen bei familiärer PanmyelopathieHuman Genetics, 1964
- Occurrence of Mitotic Crossing-over Without Meiotic Crossing-overScience, 1946