Strain Rate Effects in Porous Materials

Abstract
The behavior of metal foams under rapid loading conditions is assessed. Dynamic loading experiments were conducted in our laboratory using a split Hopkinson pressure bar apparatus and a drop weight tester; strain rates ranged from 45 s−1 to 1200 s−1. The implications of these experiments on open-cell, porous metals, and closed- and open-cell polymer foams are described. It is shown that there are two possible strain-rate dependent contributors to the impact resistance of cellular metals: (i) elastic-plastic resistance of the cellular metal “skeleton,” and (ii) the gas pressure generated by gas flow within distorted open cells. A theoretical basis for these implications is presented.