Influence of recruit condition on food competition and predation risk in a coral reef fish

Abstract
Settlement rate is considered to be a major determinant of the population structure of coral reef fishes. In this study, the effects of larval physiological condition on survival, predation risk and competitive ability are assessed for a small damselfish, Pomacentrus moluccensis. New settlers were collected and fed for 5 days to produce high and low condition (measured as lipid) treatment fish. In a field experiment, pairs (one high and one low condition fish) were transplanted to corals. Persistence over 2 weeks was much higher (100% vs. 25%) in high condition fish. In mixed groups in the laboratory, high condition fish were both aggressively dominant and consumed more of a limiting prey source than low condition fish. In addition, low condition fish were shown to be at much higher risk of predation. All of the low condition fish but only 33% of high condition fish in mixed groups were consumed by fish predators, and in a separate experiment, 73% of feeding strikes by predators were directed at low condition fish. Quality of new settlers can have an important influence on subsequent juvenile survival. The mechanisms for this effect are likely to include a combination of effects of condition on food competition and predation risk.