Three-dimensional SPECT reconstruction of combined cone beam and parallel beam data

Abstract
Single photon emission computed tomography (SPECT) using cone beam (CB) collimation exhibits increased sensitivity compared with acquisition geometries using parallel (P) hole collimation. However, CB collimation has a smaller field-of-view which may result in truncated projections and image artifacts. A primary objective of this work is to investigate maximum likelihood-expectation maximization (ML-EM) methods to reconstruct simultaneously acquired parallel and cone beam (P&CB) SPECT data. Simultaneous P&CB acquisition can be performed with commercially available triple camera systems by using two cone-beam collimators and a single parallel-hole collimator. The loss in overall sensitivity (relative to the use of three CB collimators) is about 15 to 20%. The authors have developed three methods to combine P&CB data using modified ML-EM algorithms. The first method consists of using both data sets to reconstruct a single intermediate image after each iteration using the ML-EM algorithm. The other two iterative algorithms combine intermediate parallel beam (PB) and CB source estimates to enhance image quality.