Continuous-wave laser fluorescence spectroscopy of impurities in tokamaks

Abstract
Laser-induced fluorescence spectroscopy has been applied as an in-situ diagnostic for impurity atoms in the edge region of the plasma in the Argonne Plasma Engineering Experiment (APEX) tokamak. Zirconium atoms introduced from a moveable probe were excited by a cw single-mode ring dye laser and monitored on lines of the a3F-z3F0 manifold. The fluorescence signal from a 0.03 cm3 volume was recorded at 1-ms intervals with a computer-controlled 4-channel 100-MHz scaler system. Acousto-optic modulation of the laser beam at 100 kHz allowed subtraction of plasma background light. Absolute calibration by Rayleigh scattering gave a detectability limit ∼1010 Zr atoms/cm3 in this apparatus. The detectability limit was determined by a detailed consideration of power and transit time broadening. The effects of several experimental parameters were examined and suggestions for increasing detection sensitivity are presented. Doppler-shift experiments indicated a thermal-velocity distribution for the detected Zr atoms. Intrinsic-velocity resolution of the experiments, calculated from effective excitation linewidths, was ∼25 m/s.