Inhibition of Entry of HIV-1 in Neural Cell Lines by Antibodies Against Galactosyl Ceramide

Abstract
Although the CD4 molecule is the principal cellular receptor for the human immunodeficiency virus (HIV), several CD4-negative cell lines are susceptible to infection with one or more HIV strains. These findings indicate that there are alternate modes of viral entry, perhaps involving one or more receptor molecules. Antibodies against galactosyl ceramide (galactocerebroside, or GalC) inhibited viral internalization and infection in two CD4-negative cell lines derived from the nervous system: U373-MG and SK-N-MC. Furthermore, recombinant HIV surface glycoprotein gp120 bound to GalC but not to other glycolipids. These results suggest a role for GalC or a highly related molecule in HIV entry into neural cells.