Pulse propagation near zero group-velocity dispersion in a femtosecond dye laser

Abstract
The propagation of femtosecond pulses in a colliding-pulse mode-locked dye laser near zero group-velocity dispersion is studied. The pulse spectrum is shown to exhibit a double-peak structure. This structure and its dependence on the intracavity dispersion can be explained by nonlinear pulse propagation near zero dispersion. A value for the third-order dispersion of the laser cavity is deduced and is found to be predominant for pulses shorter than 50 fsec.