Inhibition by pertussis toxin of the activation of Na+-dependent uridine transport in dimethyl-sulphoxide-induced HL-60 leukaemia cells

Abstract
The effects of pertussis toxin on the Na(+)-dependent transport of uridine were studied in HL-60 leukaemia cells induced to differentiate along the granulocytic or monocytic pathways by dimethyl sulphoxide (DMSO) or phorbol 12-myristate 13-acetate (PMA) respectively. Pertussis toxin at 50 ng/ml completely inhibited the activation of Na(+)-dependent uridine transport and consequently prevented the formation of intracellular pools of free uridine which occurs in HL-60 cells induced to differentiate by DMSO. The inhibition of Na(+)-dependent uridine transport by pertussis toxin in cells exposed to DMSO was associated with a 14-fold decrease in affinity, with no change in Vmax. Pertussis toxin, however, had no effect on Na(+)-dependent uridine transport in PMA-induced HL-60 cells. Furthermore, 500 ng of cholera toxin/ml had no effect on the Na(+)-dependent uptake of uridine in DMSO-treated HL-60 cells. These results suggest that the activation of the Na(+)-dependent transport of uridine in HL-60 cells induced to differentiate along the granulocytic pathway by DMSO is coupled to a pertussis-toxin-sensitive guanine-nucleotide binding protein (G-protein).