Abstract
The report that microvillar cores of isolated, demembranated brush borders retract into the terminal web in the presence of Ca(++) and ATP has been widely cited as an example of Ca(++)-regulated nonmuscle cell motility. Because of recent findings that microvillar core actin filaments are cross-linked by villin which, in the presence of micromolar Ca(++), fragments actin filaments, we used the techniques of video enhanced differential interference contrast, immunofluorescence, and phase contrast microscopy and thin-section electron microscopy (EM) to reexamine the question of contraction of isolated intestinal cell brush borders. Analysis of video enhanced light microscopic images of Triton- demembranated brush borders treated with a buffered Ca(++) solution shows the cores disintegrating with the terminal web remaining intact; membranated brush borders show the microvilli to vesiculate with Ca(++). Using Ca(++)/EGTA buffers, it is found that micromolar free Ca(++) causes core filament dissolution in membranated or demembranated brush borders, Ca(++) causes microvillar core solation followed by complete vesiculation of the microvillar membrane. The lengths of microvilli cores and rootlets were measured in thin sections of membranated and demembranated controls, in Ca(++)-, Ca(++) + ATP-, and in ATP-treated brush borders. Results of these measurements show that Ca(++) alone causes the complete solation of the microvillar cores, yet the rootlets in the terminal web region remain of normal length. These results show that microvilli do not retract into the terminal web in response to Ca(++) and ATP but rather that the microvillar cores disintegrate.