Crystal and Molecular Structure of the Sodium Salt of the Dinucleotide Duplex d(CpG)

Abstract
The crystal and molecular structure of the sodium salt of deoxycytidylyl-{3′ −5′)-deoxyguanosine has been determined from X-ray diffraction data. The crystals, obtained from an aqueous y- butyrolactone solution at pH = 5.3, are orthorhombic, P212121, a= 10.640(2), b= 11.184(2) and c=44.618(4) A. The structure was refined to an R = 0.041. The d(CpG) structure is similar to the ammonium salt solved by Cruse et al.(1). Both structures form a parallel self base paired mini-double helix. In d(CpG).Na+, one of the two paired cytosines is protonated on N(3). The cytosines form 3 hydrogen bonds while the guanines form only 2. The Na+ ion is coordinated with five groups: two water molecules, 0(6) of guanine A, N(7) of guanine B and 0(5′) of cytosine B, forming a square pyramid. The hydration shell around the mini-helix is analysed and compared with that of the ammonium salt. d(CpG).Na+ is the second d(CpG) oligonucleotide found with a self base pairing arrangement despite of the fact that the crystallization conditions and counterion were different in both cases. The hypothesis that self base pairing is not only a crystallization artifact but may play a role under physiological conditions as a source of transversion mutations is discussed.

This publication has 33 references indexed in Scilit: