Osmolality and solute composition are strong regulators of AQP2 expression in renal principal cells

Abstract
The water permeability of the renal collecting duct is regulated by the insertion of aquaporin-2 (AQP2) into the apical plasma membrane of epithelial (principal) cells. Using primary cultured epithelial cells from the inner medulla of rat kidney (IMCD cells), we show that osmolality and solute composition are potent regulators of AQP2 mRNA and protein synthesis, as well as the classical cAMP-dependent pathway, but do not affect the arginine vasopressin-induced AQP2 shuttle. In the presence of the cAMP analog dibutyryl cAMP (DBcAMP, 500 μM), NaCl and sorbitol, but not urea, evoked a robust increase of AQP2 expression in IMCD cells, with NaCl being far more potent than sorbitol. cAMP-responsive element-binding protein phosphorylation increased with DBcAMP concentrations but was not altered by changes in osmolality. In the rat and human AQP2 promoter, we identified a putative tonicity-responsive element. We conclude that, in addition to the arginine vasopressin/cAMP-signaling cascade, a further pathway activated by elevated effective osmolality (tonicity) is crucial for the expression of AQP2 in IMCD cells, and we suggest that the effect is mediated via the tonicity-responsive element.