Diversification within grapevine cultivars goes through chimeric states

Abstract
Vitis vinifera 'Pinot' clones were analysed at 50 microsatellite loci to assess intravarietal genetic diversity. When analysing leaf tissue DNAs, polymorphism mainly resulted from the appearance of a third allele when two were expected for heterozygous loci in a diploid species. The sequencing of the three microsatellite alleles at two loci has confirmed their simultaneous presence in the leaf tissues. A hypothesis explaining the triallelic profiles at a locus is the presence of a periclinal chimera meristem structure, in which genetically different cell layers coexist. The periclinal chimeric state of two Vitis vinifera 'Pinot gris' clones was confirmed by splitting and analysing the genotypes resulting from L1 and L2 cell layers in progeny derived from self-fertilization, in root tissues, and in plants regenerated from somatic embryogenesis. Prevalence of chimerism in polymorphic clones observed in a collection of 145 accessions belonging to 'Pinot gris', 'Pinot noir', Pinot blanc', 'Pinot meunier', and 'Pinot moure' cultivars was demonstrated. The accumulation of somatic mutations and cell layer rearrangements allowed us to deduce the relationships between the various genotypes and to open a way for understanding the diversification process and the phylogeny in the 'Pinot' group.