Effect of a DC corona electrical discharge on the airflow along a flat plate

Abstract
Ability of a DC electrical discharge to control low-velocity airflow along a flat plate is analyzed. Specifically, the electrodes are flush mounted on the insulating surface of the plate creating a tangential corona discharge at close vicinity of the wall. In this paper, visualizations of the low-velocity airflow (up to 1.4 m/s corresponding to Re=16 000) along the flat plate are presented. They show that the ionic wind induced by the corona discharge modifies the original airflow considerably, resulting in the airflow reattachment to the wall and reduction of the wake size. Velocity measurements by particle imaging velocimetry and by Pitot tube are conducted in a wind-tunnel loop for higher airflow velocities (up to 11 m/s corresponding to Re=117 800). Results show that the corona discharge at such high airflow velocities does affect significantly the velocity profile within the viscous boundary layer.

This publication has 14 references indexed in Scilit: