USE OF 8-METHOXYPSORALEN AND LONG-WAVELENGTH ULTRAVIOLET-RADIATION FOR DECONTAMINATION OF PLATELET CONCENTRATES

  • 1 July 1989
    • journal article
    • research article
    • Vol. 74 (1), 517-525
Abstract
Transmission of viral diseases through blood products remains an unsolved problem in transfusion medicine. We have developed a psoralen photochemical system for decontamination of platelet concentrates in which platelets are treated with long wavelength ultraviolet radiation (UVA, 320-400 nm) in the presence of 8-methoxypsoralen (8-MOP). Bacteria, RNA viruses, and DNA viruses ranging in genome size from 1.2 .times. 106 to 1010 daltons, encompassing the size range of human pathogens, were inoculated into platelet concentrates and subjected to treatment. This system inactivated 25 to 30 logs/h of bacteria Escherichia coli or Staphylococcus aureus, 6 logs/h of bacteriophage fd, 0.9 log/h of bacteriophage R17 and 1.1 logs/h of feline leukemia virus (FeLV) in platelet concentrates maintained in standard storage bags. Platelet integrity and in vitro function before, immediately following photochemical treatment, and during prolonged storage after treatment, were evaluated by measuring: (1) extracellular pH; (2) platelet yields; (3) extracellular lactate dehydrogenase (LDH) levels: (4) platelet morphology; (5) platelet aggregation responsiveness; (6) thromboxane .beta.-2 (TXB-2) production; (7) dense body secreton; and (8) alpha granule secretion. These assays demonstrated that this photochemical inactivation system inactivated bacteria and viruses in platelet concentrates with minimal adverse effects on the in vitro function of platelets in comparison to untreated control concentrates maintained under current, standard blood bank conditions.