Iron(VI) and Iron(V) Oxidation of Copper(I) Cyanide
- 13 April 2005
- journal article
- research article
- Published by American Chemical Society (ACS) in Environmental Science & Technology
- Vol. 39 (10), 3849-3854
- https://doi.org/10.1021/es048196g
Abstract
Copper(Il) cyanide (Cu(CN)4(3-)) in the gold mine industry presentsthe biggest concern in cyanide management because it is much more stable than free cyanide. Cu(CN)4(3-) is highlytoxic to aquatic life; therefore, environmentally friendly techniques are required for the removal of Cu(CN)4(3-) from gold mine effluent. The oxidation of Cu(CN)4(3-) by iron-(VI) (FeVIO4(2-), Fe(VI)) and iron(V) (FeVO4(3-), Fe(V)) was studied using stopped-flow and premix pulse radiolysis techniques. The stoichiometry with Fe(VI) was determined to be 5HFeO(4-) + Cu(CN)4(3-) + 8H2O - > 5Fe(OH)3 + Cu2+ + 4CNO- +3/202 + 6OH-. The rate law for the oxidation of Cu(CN)4(3-) by Fe(VI) was found to be first-order with each reactant. The rates decreased with increasing pH and were mostly related to a decrease in concentration of reactive protonated Fe(VI) species, HFeO4-. A mechanism is proposed that agrees with the observed reaction stoichiometry and rate law. The rate constant for the oxidation of Cu(CN)4(3-) by Fe(V) was determined at pH 12.0 as 1.35 +/- 0.02 x 10(7) M(-1) s(-1), which is approximately 3 orders of magnitude larger than Fe(VI). Results indicate that Fe(VI) is highly efficient for removal of cyanides in gold mill effluent.Keywords
This publication has 21 references indexed in Scilit:
- A Theoretical Study of Reactivity and Regioselectivity in the Hydroxylation of Adamantane by Ferrate(VI)The Journal of Organic Chemistry, 2003
- Sequential One-Electron Reduction of Fe(V) to Fe(III) by Cyanide in Alkaline MediumThe Journal of Physical Chemistry B, 2001
- Dissociation constants of the monoprotic ferrate(VI) ion in NaCl mediaPhysical Chemistry Chemical Physics, 2001
- Copper-Catalyzed Oxidation of Cyanide by Peroxide in Alkaline Aqueous SolutionAustralian Journal of Chemistry, 1995
- Removal of toxic metals and nonmetals from contaminated waterJournal of Toxicology and Environmental Health, 1992
- The effect of copper and iron complexation on removal of cyanide by ozoneIndustrial & Engineering Chemistry Research, 1988
- Kinetics and mechanism of ozonation of free cyanide species in waterEnvironmental Science & Technology, 1985
- Free radicals generated by radiolysis of aqueous solutionsJournal of Chemical Education, 1981
- Pulse radiolysis of ethyl acetate and its solutionsThe Journal of Physical Chemistry, 1976
- Phosphorus Oxychloride in the Preparation of KetiminesJournal of the American Chemical Society, 1951