Multiple Equilibria of the Global Thermohaline Circulation

Abstract
A general circulation model with a highly idealized geometry is used to investigate which fundamentally different equilibria of the global thermohaline circulation may exist. The model comprises two identical basins representing the Atlantic and Pacific oceans, which are connected by a circumpolar channel in the south. The model circulation is driven, in addition to wind forcing by restoring the sea surface temperature to prescribed values and specified freshwater fluxes in the surface salinity budget (mixed boundary conditions). The boundary conditions are symmetric with respect to the equator and identical for both oceans. Four fundamentally different, stable steady states are found under the same set of boundary conditions. Two of the equilibria show both oceans in the same state, with high-altitude deep-water formation occuring either in both northern or in both southern oceans, respectively. Two additional equilibria exist in which the thermohaline circulations of the basins differ fundament... Abstract A general circulation model with a highly idealized geometry is used to investigate which fundamentally different equilibria of the global thermohaline circulation may exist. The model comprises two identical basins representing the Atlantic and Pacific oceans, which are connected by a circumpolar channel in the south. The model circulation is driven, in addition to wind forcing by restoring the sea surface temperature to prescribed values and specified freshwater fluxes in the surface salinity budget (mixed boundary conditions). The boundary conditions are symmetric with respect to the equator and identical for both oceans. Four fundamentally different, stable steady states are found under the same set of boundary conditions. Two of the equilibria show both oceans in the same state, with high-altitude deep-water formation occuring either in both northern or in both southern oceans, respectively. Two additional equilibria exist in which the thermohaline circulations of the basins differ fundament...