Behavioral and Neurophysiological Thresholds for Electrical Cochlear Stimulation in the Deaf Cat

Abstract
Psychophysical detection thresholds for unmodulated electrical pulse trains or for sinusoidally amplitude-modulated (SAM) pulse trains were estimated in deaf juvenile cats using a conditioned avoidance paradigm. Biphasic current pulses (0.2 ms/phase) were delivered by scala tympani electrodes consisting of 4–8 electrode contacts driven as bipolar pairs. Electrical auditory brainstem response (EABR) thresholds were obtained periodically, and at the conclusion of behavioral training, response thresholds were obtained for neurons in the inferior colliculus (IC) and the primary auditory cortex (A1) in acute physiological experiments in the same animals. The results of the study include: (1) detection thresholds for unmodulated pulse trains and for SAM pulse trains were virtually identical; (2) EABR thresholds and behavioral thresholds were significantly correlated, although EABR thresholds consistently overestimated behavioral thresholds; (3) the lowest thresholds in the IC and the A1 were significantly correlated with behavioral thresholds, and (4) mean lowest thresholds in the IC and the A1 were essentially the same as the mean psychophysical detection threshold in the trained deaf cats.