Dissociation of response inhibition and performance monitoring in the stop signal task using event‐related fMRI
- 1 February 2007
- journal article
- Published by Wiley in Human Brain Mapping
- Vol. 28 (12), 1347-1358
- https://doi.org/10.1002/hbm.20355
Abstract
We examined the neural substrate of motor response inhibition and performance monitoring in the stop signal task (SST) using event-related functional magnetic resonance imaging (fMRI). The SST involves a go task and the occasional requirement to stop the go response. We posit that both the go and the stop phases of the SST involve components of inhibition and performance monitoring. The goal of this study was to determine whether inhibition and performance monitoring during go and stop phases of the task activated different networks. We isolated go-phase activities underlying response withholding, monitoring, and sensorimotor processing and contrasted these with successful inhibition to identify the substrate of response inhibition. Error detection activity was isolated using trials in which a stop signal appeared but the response was executed. These trials were modeled as a hand-specific go trial followed by error processing. Cognitive go-phase processes included response withholding and monitoring and activated right prefrontal and midline networks. Response withdrawal additionally activated right inferior frontal gyrus and basal ganglia (caudate). Error detection invoked by failed inhibition activated dorsal anterior cingulate cortex (dACC) and right middle frontal Brodmann's area 9. Our results confirm that there are distinct aspects of inhibition and performance monitoring functions which come into play at various phases within a given trial of the SST, and that these are separable using fMRI.Keywords
This publication has 81 references indexed in Scilit:
- Negative BOLD Differentiates Visual Imagery and PerceptionNeuron, 2005
- The Cognitive Neuroscience of Response Inhibition: Relevance for Genetic Research in Attention-Deficit/Hyperactivity DisorderBiological Psychiatry, 2005
- Inhibition and the right inferior frontal cortexTrends in Cognitive Sciences, 2004
- Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's diseaseBrain, 2003
- Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humansNature Neuroscience, 2003
- Horse-race model simulations of the stop-signal procedureActa Psychologica, 2002
- Conflict monitoring and cognitive control.Psychological Review, 2001
- Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanismsActa Psychologica, 1999
- Conceptual Processing during the Conscious Resting State: A Functional MRI StudyJournal of Cognitive Neuroscience, 1999
- Functional architecture of basal ganglia circuits: neural substrates of parallel processingTrends in Neurosciences, 1990