Abstract
The effects of magnesium on the inhibition of phosphoinositide (PI) hydrolysis and the stimulation of [3H]norepinephrine release by N-methyl-D-aspartate (NMDA) in rat cortical slices were investigated. Removal of the magnesium from the buffer resulted in a small reduction of the inhibitory effect of 100 microM NMDA (34% inhibition in the absence of magnesium, compared with 51% for the control) when slices were coincubated with NMDA and carbachol. Addition of 10 mM Mg2+ also allowed the inhibitory effect of 100 microM NMDA on carbachol-stimulated PI hydrolysis to be expressed (44% inhibition) under these conditions. Concentration-effect curve analysis for the NMDA-induced inhibition of carbachol-stimulated PI hydrolysis indicated that the IC50 for NMDA was decreased from 14.9 microM for the control to 4.2 microM in the absence of magnesium. The absence of magnesium also had small effects on the concentration-effect curve for (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate reversal of the inhibitory effects of NMDA on carbachol-stimulated PI hydrolysis. The absence of magnesium also shifted slightly downward and flattened the NMDA concentration-effect curve if the cortical slices were pretreated with NMDA in the presence or absence of magnesium followed by removal of the NMDA and subsequent stimulation with carbachol. In contrast, cortical slices that had been prepared and treated similarly to the slices used in the PI experiments were very sensitive to the inhibitory effects of magnesium when using the NMDA stimulation of [3H]norepinephrine release assay in the presence or absence of carbachol.(ABSTRACT TRUNCATED AT 250 WORDS)