Yeast tRNAPheconformation wheels: a novel probe of the monoclinic and orthorhombic models

Abstract
A series of conformation wheels is constructed from the recently refined X-ray crystallographic data of monoclinic and orthorhombic yeast tRNAPhe. These circular plots relate the primary chemical structure (i.e., base sequence) directly to the secondary and tertiary structure of the molecule. The circular sequence of backbone torsion angles displays a unique pattern that is useful both in distinguishing the ordered and disordered regions of the molecule and in comparing the three sets of experimental data. Composite conformation wheels describe the fluctuations in the "fixed" parameters (phi', phi, chi) and independent conformation wheels reveal the changes in the "variable" parameters (omega', omega, psi, psi') of the three different yeast tRNAPhe models. Additional plots of base-stacking parameters help to visualize the intimate interrelationship between chemical sequence and three-dimensional folding of yeast tRNAPhe. The composite data illustrate several conformational schemes that position the bases of adjacent nucleosides in a parallel stacked array and reveal an even larger number of conformations that introduce bends or turns in the polynucleotide chain.