Modeling Photochemical Smog on a Computer for Decision-Making

Abstract
The success of the application of computer modeling to decision-making will depend on the degree to which the scientifically valid “cause-and-effect” features of the air pollution system are represented. For this reason, dynamic simulation models are to be preferred to statistical and empirical models. A digital simulation model based on a stoichiometrically logical chemical mechanism and trajectory estimating routines was constructed, using Los Angeles source, meteorological and geographic input. The basic physical concept underlying the simulation model is the process of evolution of photochemical pollution in a parcel of air as it moves in a dynamic urban emission/meteorological environment along a given urban wind trajectory. Both the photochemical evolution and the trajectory are numerically integrated by a standard linear multistep predictor-corrector method. Concentrations of photochemical reactants and products (i.e., primary and secondary contaminants) are determined by this numerical integration, which also includes appropriate terms for relevant effects. In five preliminary validation runs, simulated NO2, NO, and O3 values were within 20% or 0.05 ppm of those observed at air monitoring stations located near the termini of the runs. The trajectories were plotted on the basis of hourly meteorological data for 22 stations. Six control strategy exercises were conducted to illustrate the application of the model to problem-solving situations.