Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II)

Abstract
Phoborhodopsin, a repellent phototaxis receptor in Halobacterium halobium, exhibits vibrational fine structure, a feature that has not been identified for any other rhodopsin pigment at physiological temperatures. Tthis conclusion follows from analysis of the absorption properties of the pigment in H. halobium membranes containing native retinal and an array of retinal analogues. The absorption spectrum of the native pigment has a maximum at 487 nm with a pronounced shoulder at 460 nm; however, the bandwidth is that expected for a single retinylidene species. Gaussian band-shape simulation with a spacing corresponding to the vibrational frequencies of polyene stretching modes reproduces the structured absorption spectra of native pigment as well as of analogue phoborhodopsin. Absorption shifts produced by a series of dihydroretinal and other retinal analogues strongly indicate that the dominant factor regulating the color of the pigment is planarization of the retinal ring with respect to the polyene chain.