Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase.
Open Access
- 1 January 1984
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 73 (1), 87-95
- https://doi.org/10.1172/jci111210
Abstract
Survival of rats exposed to 100% oxygen was increased from 69.5 +/- 1.5 to 118.1 +/- 9.9 h (mean +/- SEM, P less than 0.05) when liposomes containing catalase and superoxide dismutase were injected intravenously before and during exposure. The increased survival time in 100% oxygen was also associated with significantly less fluid in the pleural cavity. Rats injected with catalase- and superoxide dismutase-containing liposomes, which had increased survival in 100% oxygen, had increased lung wet weight upon autopsy compared with saline-injected controls (2.9 +/- 0.2 g/lung vs. 4.8 +/- 0.4 g/lung, mean +/- SE, P less than 0.05). Intravenous injection of control liposomes along with catalase and superoxide dismutase in the suspending buffer decreased the mean pleural effusion volume 89% and had no significant effect on survival time. Lung catalase and superoxide dismutase activities were increased 3.1- and 1.7-fold, respectively, 2 h after a single intravenous injection of liposomes containing catalase or superoxide dismutase. Superoxide dismutase activity was also significantly greater than controls in both air- and 100% oxygen-exposed rat lungs, when enzyme activity was assayed 24 h after cessation of injection of control and oxygen-exposed rats with enzyme-containing liposomes every 12 h for 36 h. Free superoxide dismutase and catalase injected intravenously in the absence of liposomes did not increase corresponding lung enzyme activities, affect pleural effusion volume, lung wet weight, or extend the mean survival time of rats exposed to 100% oxygen. The clearance of liposome-augmented 125I-labeled catalase from lung and plasma obeyed first order kinetics according to a one-compartment model. When clearance of liposome-augmented catalase activity or radioactivity were the parameters used for pharmacokinetic studies, the half-life of augmented lung catalase was 1.9 and 2.6 h, respectively. The half-life of liposome-entrapped catalase and superoxide dismutase activity in the circulation was 2.5 and 4 h, respectively, while intravenously injected catalase and superoxide dismutase had a circulation half-life of 23 and 6 min, respectively.This publication has 34 references indexed in Scilit:
- Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury.Journal of Biological Chemistry, 1983
- STRUCTURAL AND BIOCHEMICAL ADAPTIVE-CHANGES IN RAT LUNGS AFTER EXPOSURE TO HYPOXIA1983
- Improved methods for the delivery of liposome-sequestered RNA into eucaryotic cellsArchives of Biochemistry and Biophysics, 1982
- Liposomes as Gene Carriers: Efficient Transformation of Mouse L Cells by Thymidine Kinase GeneScience, 1982
- Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria.Journal of Biological Chemistry, 1981
- Interactions of liposomes with the reticuloendothelial system effects of reticuloendothelial blockade on the clearance of large unilamellar vesiclesBiochimica et Biophysica Acta (BBA) - General Subjects, 1981
- RETENTION OF CYTOSINE-ARABINOSIDE IN MOUSE LUNG FOLLOWING INTRAVENOUS ADMINISTRATION IN LIPOSOMES OF DIFFERENT SIZE1979
- Effect of ischemic anoxia and barbiturate anesthesia on free radical oxidation of mitochondrial phospholipidsBrain Research, 1978
- Pharmacokinetics of liposome-encapsulated anti-tumor drugsBiochemical Pharmacology, 1978
- The failure of aerosolized superoxide dismutase to modify pulmonary oxygen toxicity.Published by Elsevier ,1977