• 1 December 1990
    • journal article
    • review article
    • Vol. 54 (4), 473-501
Abstract
Myxobacteria are soil bacteria whose unusually social behavior distinguishes them from other groups of procaryotes. Perhaps the most remarkable aspect of their social behavior occurs during development, when tens of thousands of cells aggregate and form a colorful fruiting body. Inside the fruiting body the vegetative cells convert into dormant, resistant myxospores. However, myxobacterial social behavior is not restricted to the developmental cycle, and three other social behaviors have been described. Vegetative cells have a multigene social motility system in which cell-cell contact is essential for gliding in multicellular swarms. Cell growth on protein is cooperative in that the growth rate increases with the cell density. Rippling is a periodic behavior in which the cells align themselves in ridges and move in waves. These social behaviors indicate that myxobacterial colonies are not merely collections of individual cells but are societies in which cell behavior is synchronized by cell-cell interactions. The molecular basis of these social behaviors is becoming clear through the use of a combination of behavioral, biochemical, and genetic experimental approaches.