Nuclease S1 Cleavage and the Primary Structure of Mitochondrial DNA

Abstract
The single-strand-specific nuclease S1 from Aspergillus oryzae rapidly converts superhelical mitochondrial DNA (African Green Monkey cells, Vero ATCC; CCL 81) into nicked circular DNA. These nicked mitochondrial DNA molecules contain two nicks, one in each strand. The phosphodiester backbones are cleaved during this reaction at or near sites that are alkali-labile. In a second slow reaction the circular mitochondrial DNA is converted into a linear duplex DNA. Permutation tests indicate that this linear DNA represents a nonpermutated collection of DNA molecules. These results suggest that two of the alkai-labile sites in the phosphodiester backbones of the mitochondrial chromosome are closely spaced on opposite strands and at specific positions.