Molecular level alignment at organic semiconductor-metal interfaces

Abstract
In order to clarify the electronic structure of metal-molecular semiconductor contacts, we use photoemissionspectroscopy to investigate the energetics of interfaces formed by vacuum deposition of four different molecular thin films on various metals. We find that the interface electron and hole barriers are not simply defined by the difference between the work functions of the metals and organic solids. The range of interface Fermi level positions is material dependent and dipole barriers are present at all these interfaces. The results demonstrate the breakdown of the vacuum level alignment rule at interfaces between these organic molecular solids and metals.