The Role of Small Soluble Aerosols in the Microphysics of Deep Maritime Clouds

Abstract
Some observational evidence—such as bimodal drop size distributions, comparatively high concentrations of supercooled drops at upper levels, high concentrations of small ice crystals in cloud anvils leading to high optical depth, and lightning in the eyewalls of hurricanes—indicates that the traditional view of the microphysics of deep tropical maritime clouds requires, possibly, some revisions. In the present study it is shown that the observed phenomena listed above can be attributed to the presence of small cloud condensation nuclei (CCN) with diameters less than about 0.05 μm. An increase in vertical velocity above cloud base can lead to an increase in supersaturation and to activation of the smallest CCN, resulting in production of new droplets several kilometers above the cloud base. A significant increase in supersaturation can be also caused by a decrease in droplet concentration during intense warm rain formation accompanied by an intense vertical velocity. This increase in supersaturatio...